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FREQUENCY RANGES FOR EXISTENCE OF WAVES I N  A 

COLD, COILISIONLESS HYDROGElN PLASMA 

by Richard R. Woollett 

Lewis Re search Center 

SUMMARY 

The dispers ion r e l a t i o n  of an electromagnetic wave propagating i n  a cold 
co l l i s ion le s s  plasma a t  an a r b i t r a r y  angle with t h e  magnetic f i e l d  w a s  solved 
f o r  an atomic hydrogen plasma. The r e s u l t s  ind ica te  t h a t  wave propagation i s  
not possible  f o r  a l l  values of frequency i f  t he  density,  magnetic-field 
s t rength,  and a x i a l  wavelength a r e  held constant.  Those regions of t he  f r e -  
quency spectrum where wave propagation i s  possible  a r e  re fer red  t o  as ex i s t -  
ence regions. Within these regions,  bounded, cold c o l l i s i o n l e s s  plasmas exhib- 
it na tu ra l  modes of o sc i l l a t ion .  Consequently, i f  experimental da ta  f a l l  i n  an 
existence region, t he  model of a cold c o l l i s i o n l e s s  plasma might be used to de- 
scr ibe the  phenomenon. The existence regions a r e  determined f o r  a range of 
magnetic f i e l d s  from lo2 t o  lo5 gauss, a range of i o n  dens i t i e s  from lolo t o  
1014 ions per cubic centimeter, and a range of selected a x i a l  wavelengths from 
10 t o  100 centimeters. The computations a re  compared with those r e su l t i ng  from 
an approximate dispers ion r e l a t i o n  t h a t  neglects  the  e f f e c t s  of e lec t ron  
i n e r t i a  . 

INTRODUCTION 

The r e s u l t s  of experiments concerning wave propagation i n  plasmas may ex- 
h i b i t  behavior t h a t  cannot be predicted. 
preted as a consequence of wave propagation i f  they occur i n  a frequency range 
(exis tence region) obtained from the  so lu t ion  of the dispers ion re la t ion .  
re la t ion ,  obtained from t h e  wave equation, depends on the model chosen t o  rep- 
resent  t h e  experimental plasma. 

Such r e s u l t s  may possibly be in t e r -  

This 

A plasma model t h a t  has been successful i n  pred ic t ing  many of t he  impor- 

For t h i s  model, the  dispers ion r e l a t i o n  f o r  t h e  propa- 
t a n t  types of wave motion occurring i n  r e a l  plasmas i s  t h a t  of a uniform, cold 
c o l l i s i o n l e s s  plasma. 
gat ion of plane waves i n  an i n f i n i t e  medium i s  derived i n  reference 1. This 
dispers ion r e l a t i o n  has been solved f o r  many d i f f e r e n t  cases by many d i f f e r e n t  
invest igators .  Solutions f o r  t h e  atomic hydrogen plasma per t inent  to t h i s  r e -  
por t  a r e  presented i n  reference 2. The ana lys i s  of reference 3 demonstrates 
t h a t  t h i s  dispers ion r e l a t i o n  appl ies  a l s o  t o  the  o s c i l l a t i o n s  of a plasma cy1 



inder  bounded by e i t h e r  a vacuum, a d i e l e c t r i c  w a l l ,  or a w a l l  of i n f i n i t e  con- 
duct i v i  ty. 

I n  t h i s  report ,  so lu t ions  of t h e  dispers ion r e l a t i o n  f o r  t he  cold c o l l i -  
s ion less  plasma are examined t o  determine t h e  regions of t h e  frequency spectrum 
f o r  which so lu t ions  a re  possible .  
of these  existence regions, a more de ta i led  study using the  cold, co l l i s ion -  
less plasma model i s  suggested. 
t h e  phenomenon i s  e i t h e r  not compatible with t h i s  simple plasma model or not 
t h e  r e s u l t  of a wave phe‘nomenon a t  a l l .  

If an  observed phenomenon occurs within one 

If it does not l i e  within an  exis tence region, 

Such regions of so lu t ion  have been calculated previously f o r  i on  cyclotron 
waves ( r e f .  4) .  
obtained i n  reference 4 f r o m  an approximate dispers ion r e l a t i o n  ( r e f .  5) t h a t  
d i d  not include the e f f e c t s  of t he  e l ec t ron  i n e r t i a  term t h a t  appears i n  t h e  
genera1ized’Oh”s l a w .  The r e su l t i ng  expressions of references 4 and 5 are 
shown i n  reference 6 t o  be va l id  f o r  frequencies not much above the  ion  cyclo- 
t r o n  frequency f o r  propagation angles not too near 90° from t h e  d i r ec t ion  of 
t h e  magnetic f i e l d .  The dispers ion r e l a t i o n  used herein,  which was obtained 
by using the  generalized Ohm’s l a w  of reference 7, includes t h e  i n e r t i a  term. 
The r e su l t i ng  expressions Tor plane waves a r e  e s s e n t i a l l y  equivalent t o  those 
developed i n  reference 1. With the  use of t h i s  more general  dispers ion r e l a -  
t i on ,  expressions t h a t  a r e  appl icable  f o r  a l l  frequencies can be obtained. 

The frequencies associated with the  var ious wave numbers were 

The lower and upper frequency limits, which bound the  regions where 
s teady-state  solut ions t o  t h e  wave equations a r e  possible,  a r e  calculated here- 
i n  as a funct ion of plasma densi ty  for an atomic hydrogen plasma. The r e s u l t s  
cover a range of magnetic-field s t rengths  from lo2  t o  lo5 gauss, frequencies 
from 10-1 t o  lo5 times the i o n  cyclotron frequency, ion  d e n s i t i e s  from l o l o  t o  

meters . 
ions per  cubic centimeter, and a x i a l  wavelengths from 10 t o  100 cen t i -  

The cold, c o l l i s i o n l e s s  plasma model used i n  obtaining these r e s u l t s  
appl ies  equally wel l  to f u l l y  ionized gases or t o  plasma containing electrons,  
ions, and neutrals ,  since the  neu t r a l s  behave only as a nonparticipating back- 
ground gas. 

B magnetic-field strength,  gauss 

C ve loc i ty  of l i g h t ,  cm/sec 

e e lec t ronic  charge, esu 

K nondimensionalized wave number, kc/co,i 

k wave number, 2+,, cm-1 

L lower l i m i t  on exist’ence region 
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me m a s s  of electron, g 

m a s s  of hydrogen ion, g i m 

n ion  density, ions/cm3 

n e lec t ron  density,  electrons/cm 3 
e 

U upper l i m i t  on existence region . 

A wavelength, cm 

R nondimensional angular frequency, m/wci 

1;2p wp/o-)ci 

w 

mce 

angular frequency , radians/ s ec 

e lec t ron  cyclotron frequency, Be/mec, radians/sec 

ion cyclotron frequency, Be/mic, radians/sec 

% plasma frequency, 47c+e2/me, radians/sec 

Sub scr ip ts :  

2 coordinate p a r a l l e l  t o  magnetic-field d i rec t ion  

1 coordinate perpendicular t o  magnetic-field direct ion,  rectangular o r  
c y l i n d r i c a l  coordinates 

ANALYSIS 

The propagation of an electromagnetic wave i n  a plasma at an a r b i t r a r y  
angle with t h e  magnetic f i e l d  (oblique propagation) depends on wave number, 
propagation angle, frequency, density,  and f i e l d  s t rength of the  steady super- 
imposed magnetic f i e l d .  The f i rs t  two variables,  wave number and propagation 
angle, may be replaced by a x i a l  (k,) and transverse (kl) wave numbers, which 
a r e  more conveniently r e l a t e d  t o  experimental apparatus. The r e l a t i o n  between 
the  wave numbers and t h e  various other parameters i s  obtained from t h e  disper- 
s ion re la t ion .  
can be an i n f i n i t e  and continuous s e t  of combinations of kZ and k l .  The 
boundary conditions s e l e c t  a d i s c r e t e  (but i n f i n i t e )  s e t  of kZ and k l  from 
the  t o t a l  combinations. 
as being unbounded i n  c e r t a i n  direct ions.  If t h e  unbounded d i r e c t i o n  i s  along 
z, any k, 
( re f .  6 ) .  The a c t u a l  value ex is t ing  i n  a plasma can be measured. For such a 

For a given plasma and a given frequency of o s c i l l a t i o n  there  

Frequently, t h e  plasma of i n t e r e s t  can be considered 

can be impressed upon the  plasma by a device l i k e  a S t i x  c o i l  



d i s c r e t e  value of kz it has been demonstrated (ref .  4 )  t h a t ,  when the t rans-  
verse wave number i s  permitted to vary over t h e  range 0 - < kl < 00 (with den- 
s i t y  and f i e l d  i n t e n s i t y  f ixed) ,  the frequency of an undamped wave i s  confined 
to a l imited range of permissible values. To determine t h e  allowed frequen- 
c ies ,  t h e  dispers ion r e l a t i o n  can be expressed as a polynomial i n  
f i e l d  strength, density,  and axial wavelength t r e a t e d  as parameters. 

n2  with 

The dispers ion r e l a t i o n  obtained from the simultaneous solut ion of the  
equation of motion of a f l u i d  element (eq. 2-11, r e f .  7 ) ,  generalized Ohm's 
l a w  (eq. 2-12, r e f .  7 ) ,  and Maxwell's equations can be expressed as 

0 P - kl 2 

where 

= o  

I n  the  der ivat ion of equation (1) a l l  e f f e c t s  a t t r i b u t a b l e  to c o l l i s i o n s  have 
been neglected. These would include terms involving pressure and r e s i s t i v i t y  
(ref.  7 ) .  Moreover, expressions (1) and ( 2 )  a r e  not i d e n t i c a l  to those given 
i n  reference 1 since t e r m s  of the order %/mi compared with uni ty  have been 
neglected i n  the  present investigation. This, however, doos not introduce a 
s ignif icant  discrepancy between the  two analyses ( r e f .  2 ) .  After some alge- 
b r a i c  manipulation and nondimensionalization of t h e  parameters, equation (1) 
reduces t o  

4 

I 1 1 1  1 I I -11 11111 II 1111 111111 111111 ' 



A s  a p a r t i c u l a r  parameter i s  varied, say 
grouped i n t o  bands as shown i n  the  following sketch, which i s  a l o g  log  p l o t  
of Kl with respect t o  R f o r  a f ixed K,: 

Kl, the  roots  of equation (3) a r e  

1u 

Roots of eq. ( 3 ) ,  R 

For example, the  roots  of equation (3) for the  value 
the  curves. Such curves are obtained f o r  each combination of values of 
and n. The existence regions a r e  the ranges of R f o r  which values of KI 

Kl = a a r e  indicated on 

AZ, B, 
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exis t .  
t a ined  by pro jec t ing  t h e  root  curves on t h e  abscissa .  
regions, the  lower and t h e  upper l i m i t  of each a r e  labeled L and U, respect-  
ively,  and the  first t o  t h e  f i f t h  regions a r e  i d e n t i f i e d  by numbers 1 t o  5 pre-  
ceding L and U. The frequency limits of each of these  s e t s  as a funct ion of 
density,  axial wavelength, and magnetic-field s t rengths  a r e  the quan t i t i e s  t h a t  
a r e  of most i n t e r e s t  here in  and, consequently, cons t i t u t e  t h e  major p a r t  of t he  
p lo t s .  
4). 
it w i l l  be ca l l ed  the  hybrid band. 

These existence regions a r e  indicated by the  heavy hor izonta l  ba r s  ob- 
To i d e n t i f y  t h e  various 

The f i r s t  region has been r e fe r r ed  t o  as the  ion  cyclotron band (ref .  
Since the  second region depends on both e l ec t ron  and ion  cha rac t e r i s t i c s ,  

Curves of kl as a function of R, such as t h a t  i n  t h e  sketch, a r e  pre- 
sented i n  f igure  1 f o r  magnetic f i e l d s  of lo4 gauss, a x i a l  wavelengths of 10 
and 40 centimeters, and ion  d e n s i t i e s  of lolo t o  1014 ions per  cubic cen t i -  
meter. One cha rac t e r i s t i c  of t he  dispers ion r e l a t i o n  depicted i n  f igure  1 i s  
t h a t  i n  four of t h e  f i v e  existence regions kl i s  a monotonic funct ion of R. 
I n  the  f i rs t  branch around the  ion  cyclotron frequency it i s  a decreasing func- 
t i on ,  while i n  t h e  t h i r d ,  fourth,  and f i f t h  branches it i s  an increasing func- 
t ion .  Ekpressions f o r  t he  boundaries of t h e  exis tence regions can be obtained 
by s e t t i n g  KI = 0 or w i n  equation (3).  The ca lcu la t ion  f o r  Kl = 0 
y ie lds  f i v e  frequencies, four of which co r rec t ly  y i e l d  band limits. 
maining root,  which i s  f o r  t he  second existence region, does not correspond 
necessar i ly  t o  e i t h e r  t he  upper or t he  lower l i m i t  of t h e  second band. 

can be seen i n  f igu re  l ( b )  by comparing the  lo1', and ion  per  cubic 
centimeter densi ty  curves. I n  t h e  second band t h e  condi t ion Kl = 0 repre- 
s en t s  a lower l i m i t  a t  an ion  densi ty  of 
upper l i m i t  a t  loLo ions per cubic centimeter and does not represent  any band 
l i m i t  a t  10l2 ions per cubic centimeter. 

The r e -  

This 

ions per  cubic centimeter, and an 

For the  case of Kl = m, t h e  f i n i t e  roo t s  a r e  determined by 

2 R - R Re + Rp + R,a + RpRe = 0 
2( 9 

RZ = 0 

Equation (4a) has two roots ,  the smallest  of which does not correspond neces- 
s a r i l y  t o  the  limits of t he  second band ( f ig .  1). The roo t s  of t h e  dispers ion 
r e l a t i o n  i n  the  second band do not form a monotonic funct ion of fo r  some 
values of n. Consequently, for the  region the  frequency limits cannot be de- 
termined from e i t h e r  Kl = 0 or KI = w. 

Kl 

It i s  of i n t e r e s t  t o  compare the  existence band obtained from the  gener- 
a l i z e d  dispers ion r e l a t i o n  with t h a t  obtained from the  approximate r e l a t i o n  
employed i n  reference 5 i n  a study of ion  cyclotron waves. It can be shown 
t h a t  t h e  equation of reference 5 reduces t o  

6 



2 This expression, being of t he  t h i r d  degree i n  
KI, K,, and 
cies .  Equation (3) i s  of t he  f i f t h  degree i n  R 2  and y ie lds  f i v e  d i f f e ren t  
frequencies.  
t ron  i n e r t i a  e f f e c t  i s  neglected. 

R , ind ica tes  t h a t  f o r  a given 
Rp(n) it i s  poss ib le  t o  generate waves of th ree  d i f f e ren t  frequen- 

Two of t h e  high-frequency modes a r e  therefore  l o s t  when the  elec-  

RESULTS 

The limits of t he  existence regions determined by equation (3) a r e  p lo t t ed  
as funct ions of dens i ty  i n  f igu re  2 f o r  f i e l d  i n t e n s i t i e s  from 102 t o  1-05 
gauss, i on  d e n s i t i e s  from 1O1O t o  
wavelengths of 10, 20, 40, and 100 centimeters. These p l o t s  show t h a t  there  
a re  f i v e  existence bands f o r  plasma wave propagation. The first band (number- 
ing f r o m t h e  l e f t )  always has a lower frequency l i m i t  of zero; t he  upper l i m i t  
i s  dependent on ax ia l  wavelength, bu t  e s s e n t i a l l y  independent of f i e l d  s t rength 
f o r  t h e  range of parameters investigated.  
have infinite upper frequency limits. I n  addition, t h e  four th  band always 
overlaps the  f i f th ,  and occasionally the  t h i r d  band overlaps the  fourth,  a sit- 
uat ion t h a t  decreases t h e  nurnber of nonexistence regions. 

ions per cubic centimeter, and axial  

The four th  and f i f t h  bands always 

Figure 2(c-3) may be s tudied as an example of t h e  existence regions f o r  
a p a r t i c u l a r  set of parameters. 
ions per cubic centimeter, wave propagation i s  possible  f o r  some value of fre- 
quency within t h e  following bands: first band, 0 < R < 0.95; second band, 
13 < R < 38; t h i r d  band, 1.9x102 < < R < ~j 

f i f t h  band, 2X1O3 < 
f igure  2 i s  most useful  when experimental power absorption i s  examined as a 
funct ion of the forcing frequency. Thus, i f  the energy absorption of a plasma 
under a rad io  frequency c o i l  peaks a t  a frequency that i s  not i n  an existence 
region, the absorption i s  not associated w i t h  exc i t a t ion  of a na tu ra l  mode i n  a 
cold c o l l i s i o n l e s s  plasma. 

It can be seen tha t ,  f o r  a densi ty  of lo1‘ 

2 < 1 . 9 ~ 1 0 ~ ;  four th  band, 6x10 

< W. The pa r t i cu la r  form of presentat ion t h a t  appears i n  

It i s  in t e re s t ing  t o  cogpare the results of equation (3) with those ob- 
ta ined from the  dispers ion r e l a t i o n  presented i n  reference 5 and represented by 
equation (5) i n  t h e  present report .  The existence regions determined from 
equation (5) are p lo t t ed  i n  figure 3 f o r  a f i e l d  i n t e n s i t y  of 1-04 gauss, a 
range of ion densi ty  from 10” t o  
wavelengths of 10, 40, and 100 centimeters. Since KI i s  a monotonically in -  
creasing funct ion of R i n  each of t h e  three  existence bands determined from 
equation ( 5 ) ,  t he  lower and t h e  upper limits f o r  each region were determined by 
subs t i t u t ing  t h e  r e l a t i o n  KL = 0 and W, respect ively,  i n t o  the  dispers ion 
r e l a t i o n  (eq. (5 ) ) .  

ions per cubic centimeter, and a x i a l  

In  addi t ion  t o  t h e  l o s s  of t h e  two upper existence bands, 
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t h e  character  of t h e  i o n  cyclotron band changes. 
t o  zero on t h e  low-frequency s ide  bu t  has a d e f i n i t e  nonzero lower boundary. 
A t  low d e n s i t i e s  t h e  lower limit of t h e  second band s h i f t s  to grea ter  frequen- 
c i e s  than those given by t h e  f ive- root  expression. A s  an example, a t  a densi ty  
of 1O1O ions pe r  cubic centimeter and an  axial  wavelength of 40 centimeters, 
the lower l i m i t  of t h e  second band obtained f r o m t h e  f ive- root  expression i s  
1 . 7  uci, while the three-root  equation ind ica t e s  a l l  t he  solut ions of t h e  sec- 
ond band a re  grouped around 50 uci. Agreement between t h e  t w o  models i s  found 
f o r  t he  upper l i m i t  of t h e  first band and t h e  lower limit of t h e  second band 
a t  high density. 

This band no longer extends 

There a r e  graphical  presentations,  other than those of f igu re  2, t h a t  may 
be more convenient f o r  use with ce r t a in  types of plasma experiments. A s  an 
example, consider t he  case when R i s  var ied by changing t h e  magnetic f i e l d  
while maintaining t h e  dimensional frequency w a t  a f ixed  value. For t h i s  
pa r t i cu la r  case it i s  more convenient t o  t r e a t  t he  magnetic-field in t ens i ty  as 
a var iable  and t h e  exc i t ing  frequency a s  a parameter. Results displayed i n  
t h i s  manner can be obtained by cross  p l o t t i n g  t h e  da ta  presented i n  f igure  2. 
A s  an example, t h e  existence regions a t  a hz of 40 centimeters and an w 
of 9.6X107 per  second a r e  p lo t t ed  i n  f igu re  4 as a funct ion of magnetic f i e l d  
in tens i ty .  

CONCLUDING REMARKS 

Because of t he  pa r t i cu la r  nature of the  dispers ion r e l a t i o n  for the  propa- 
gat ion of an electromagnetic wave of a given axial wavelength through a plasma, 
the  t o t a l  p o s s i b i l i t i e s  f o r  wave propagation l i e  i n  r e s t r i c t e d  frequency bands. 
These density-dependent exis tence regions f o r  a cold, co l l i s ion le s s ,  atomic 
hydrogen plasma a r e  p lo t t ed  f o r  se lec ted  axial wavelengths from 10 t o  100 cen- 
t imeters,  magnetic f i e l d s  f rom 10' t o  10 

5 ions per cubic centimeters, and frequencies from 10-1 t o  10 
cyclotron frequency. 

5 1 4  gauss, dens i t i e s  from lo1' t o  10 
times t h e  ion 

If an observed wave phenomenon occurs within one of these  existence re-  
gions, a more de t a i l ed  ca lcu la t ion  of the  cold c o l l i s i o n l e s s  plasma dispers ion 
r e l a t i o n  subject t o  t h e  proper boundary conditions i s  indicated.  
nomenon does not l i e  within an existence region, it i s  not compatible with t h i s  
plasma model, and a more re f ined  model should be considered. 
could possibly modify the  existence regions or even introduce e n t i r e l y  new ones 
i f  additional_ plasma modes developed. 

If t h e  phe- 

Such an  ana lys i s  

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, December 28, 1963 
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Figure 1. - Dispersion re la t ion  fo r  hydrogen plasma. Magnetic f i e l d ,  lo4 gauss. 
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Figure 2. - Existence regions f o r  hydrogen plasma waves. 



M 

\ 
v1 
F1 
0 
4 

8 

d 

x 
2 

G 

G 1012 

Q) a 

H 

1010 
10'1 100 101 102 103 

Nondimensional angular frequency, il 

(a-2) Axial wavelength, 20 centimeters. 

( a )  Continued. Magnetic f i e l d ,  10' gauss. 

Figure 2. - Continued. Existence regions f o r  hydrogen plasma. 
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Figure 2. - Continued. Existence regions f o r  hydrogen plasma. 



loo lo2  lo3 
Nondimensional angular frequency, R 

(b-1) Axial wavelength, 10 centimeters. 

( b )  Magnetic f ie ld ,  lo3 gauss. 

Figure 2. - Continued. Existence regions for hydrogen plasma waves. 



(b-2) Axial wavelength, 20 centimeters. 

(b) Continued. Magnetic f i e l d ,  lo3 gauss. 

Figure 2. - Continued. Existence regions f o r  hydrogen plasma waves. 
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Figure 2. - Continued. Existence regions f o r  hydrogen plasma waves. 
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Figure 2. - Continued. Existence regions f o r  hydrogen plasma waves. 
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(a )  Magnetic f i e l a ,  105 gauss. 

F igure  2. - Continued. Exis tence  r eg ions  f o r  hydrogen plasma waves. 
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Figure 2. - Continued. Exis tence  r eg ions  f o r  hydrogen plasma waves. 



U indicates upper limit of region '++------+---L 
indicates lower limit of region 

(a-4) Axial wavelength, 100 centimeters. 

(a )  Concluded. Magnetic field, 105 gauss. 

Figure 2. - Concluded. Existence regions for hydrogen plasma waves. 



Figure 3. - Existence regions f o r  hydrogen plasma wayes with electron ine r t i a  neglected (ref .  5 ) .  
Magnetic f i e ld ,  lo4 gauss. 
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